
Hydra: A Trustless Decentralized Digital Identity System

Anish Athalye
aathalye@mit.edu

Ankush Gupta
ankush@mit.edu

Kate Yu
kateyu@mit.edu

Abstract

Current solutions for unified digital identities are inse-
cure and have not been successful in reaching wide adop-
tion. These solutions have several pitfalls due to being
centralized and requiring the user to trust a third party.
We propose a trustless decentralized digital identity sys-
tem as a novel solution to the problem of maintaining
unified digital identities.

1 Introduction

Over the last 20 years, there has been an explosion in
rich, interactive web applications. Many Internet ser-
vices as electronic mail, social networking, and millions
of others, form parts of people’s online identities. How-
ever, because the Internet was built without a way to
know who you are connecting to, every Internet service
has come up with a workaround, implementing its own
digital identity system. As Kim Cameron wrote in 2005,
“today’s Internet, absent a native identity layer, is based
on a patchwork of identity one-offs” [1].

Since 2005, there has been some improvement in
this area. With the advent of OpenID [2], some sites
have incorporated support for federated identity man-
agement [3], a step toward cohesive digital identity.
The scheme allows users to sign in to a single OpenID
provider and use that as a proof of identity for all other
sites that support logging in with OpenID.

Unfortunately, there are myriad of problems with
OpenID, and even though many do support logging in
via OpenID, the technology is not generally viewed as
a success. OpenID has faced adoption problems par-
tially because all sites want to be OpenID providers and
not consumers, because providing login to other sites
via OpenID increases the value of having an account on
the providing site but accepting OpenIDs does the oppo-
site [4].

OpenID has major security issues. Even though

OpenID is described as decentralized [5], it is not truly
so. Many OpenID consumers discriminate between
sites, only allowing certain OpenID providers. OpenID
has availability problems as well: if a users’ OpenID
provider goes down, the user is locked out of all web
accounts that used that login. If the provider goes down
permanently, it will be incredibly difficult for users to
recover their online identity. Even if a provider stays on-
line, a user has to have absolute trust in their provider. A
malicious provider could impersonate the user on every
website on which the user logged in via OpenID.

These issues are not inherent to online identity sys-
tems. We propose a trustless, truly decentralized digital
identity system that overcomes many of the issues and
limitations of existing solutions for a unified digital iden-
tity.

We outline our general approach to building a trustless
decentralized digital identity system. We make heavy use
of asymmetric key cryptography, specifically, the RSA
algorithm [6].

At the heart of our design, an identity is a public key,
and a private key is used to generate proof of ownership
of an identity.

To achieve our goal of true decentralization and fault-
tolerance, we build a authenticated data store on top of an
untrusted highly-replicated distributed peer-to-peer data
structure that provides eventual consistency. We store
profile data in this authenticated data store.

To create an identity, a user creates an RSA pub-
lic/private key pair and publishes the public key to the
network. To identify to a service using a public key,
a user participates in a challenge response protocol to
prove possession of the corresponding private key. The
user can publish digitally signed and encrypted profile
data to the network such that the information is always
available to services that the user chooses to share it with.

Our trustless decentralized digital identity system
solves many of the problems present in current solutions,
such as trust and availability. Because the service is



truly decentralized with no party controlling any iden-
tities, web service operators may be quicker to adopt the
technology.

Organization The rest of this paper is organized as
follows. In § 2, we describe our peer-to-peer gossip
network. In § 3, we describe our eventually consistent
authenticated data store and its security guarantees. In
§ 4, we describe the profile service itself, describing how
users create identities, grant and revoke access to ser-
vices, and participate in a challenge-response protocol
to prove ownership of their identity. In § 5, we briefly
describe our current implementation of the Hydra proto-
cols. In § 6, we discuss extensions to Hydra and future
work. In § 7, we conclude the paper.

2 Gossip network

At the lowest level of our system, we use a connection-
less peer-to-peer gossip network that maintains member-
ship information and provides a messaging and broadcast
service. For a clean separation of concerns, this layer
does not make use of cryptography – security is provided
by higher layers.

The gossip protocol implements peer exchange such
that nodes can be given the IP address of a single node
that is part of the network, and after that, the joining node
can automatically discover peers that are a part of the
network. This is done through a simple peer exchange
protocol where nodes periodically poll known peers for
their peer lists. After learning about new peers, the nodes
verify that the peers are reachable and add them to their
own peer list. Periodically, nodes ping peers, and if no
response is received, the peers are marked as dead and
the node stops sending them messages.

The protocol also implements a messaging and broad-
cast service. Nodes using the protocol can send a mes-
sage to a single peer or broadcast a message to all known
peers. Due to the nature of dynamic membership, the
messaging protocol does not provide guaranteed mes-
sage delivery. Fault tolerance in this area is implemented
in higher layers.

3 Authenticated data store

Building on the gossip layer, we build an eventually
consistent replicated authenticated data store. This data
structure provides a globally-shared update-only key-
value mapping where keys are RSA public keys and val-
ues are arbitrary strings. To store data for a public key,
the data has to be signed with the corresponding private
key. The system is designed to be update-only, so up-
dates to map keys are timestamped, and newer updates

will always supersede old changes. To implement this
system, servers discover each other through the gossip
layer and periodically participate in an anti-entropy pro-
tocol to learn about updates from each other. Currently,
this protocol involves each participant sending its full
data structure to the other and then performing the neces-
sary checks for correct signature and newer timestamp.

Nodes maintaining this authenticated data store are
mutually untrusting parties – security is provided
through the use of cryptography.

3.1 Security guarantees
The implementation provides two key security guaran-
tees.

Update-only Honest servers will never accept data for a
key unless it is digitally signed, and honest servers
can never be fooled into accepting stale data or
removing existing data, providing update-only se-
mantics.

Authentication Clients fetching data from the authenti-
cated data store will never accept the data unless it
has been digitally signed by the holder of the private
key corresponding to the public key.

Due to the nature of having mutually untrusting par-
ties maintaining the data store, it is not possible to protect
against denial of service – when communicating with a
dishonest server, the server can always choose to not re-
spond to the client. However, because of the way the
system is designed, the server cannot lie to the client.
Furthermore, the dishonest server cannot disrupt the ser-
vice through any communication with honest servers.

4 Profile service

The profile service utilizes the authenticated data store to
communicate each user’s profile information. Users are
identified by their public keys, and each public key is as-
sociated with a respective blob of information. The pro-
file service provides an interface for managing the con-
tents of this blob. It allows clients to grant and revoke
read privileges for other clients, and allows clients who
have been granted read permissions to decrypt the data.

4.1 Data structure
The data structure utilized by the profile service is shown
in Figure 1.

The Info attribute of the data structure is the cipher-
text of the user’s profile information, encrypted with
symmetric key K.

2



{

Info: enc_K(info),

SelfKey: P_{PK0}(K_self),

AuthorizedServices: [

enc_{self}(PK1),

enc_{self}(PK2), ...

],

Keys: [

P_{PK0}(K),

P_{PK1}(K), ...

]

}

Figure 1: The structure of a profile.

The SelfKey attribute is the ciphertext for a second
symmetric key, Ksel f , which has been encrypted using
asymmetric encryption using the user’s public key. The
user can therefore easily determine Ksel f using his private
key.

The AuthorizedServices attribute is a list in which
element corresponds to a service that is authorized to
read the user’s information. Every element is the cipher-
text of an authorized service’s public key, encrypted with
Ksel f . This allows a user to determine which services are
currently able to read the user’s data, but means that other
services are not able to determine this information.

Similarly to the AuthorizedServices attribute, the
Keys attribute is a list in which every element corre-
sponds to an authorized service. Each element in the list
is the ciphertext obtained by asymmetrically encrypting
the symmetric key K with the public key ID for an au-
thorized service. An authorized service can now iterate
through the Keys list until it can determine K using its
private key. Using K, the authorized service can decrypt
the Info attribute. Anybody who possesses the private
key corresponding to the entry can modify the profile
data to change the Info attribute, sign it for use in the
authenticated data store, and publish the updated version.

4.2 Creating identities

The core basis to Hydra’s identification system is that
identities are tied to public keys. In order to cre-
ate an identity, the client must therefore first gener-
ate a new public/private keypair. The profile service
also generates two new symmetric keys K and Ksel f .
We encrypt an empty string using K as the Info at-
tribute, and we encrypt Ksel f using the generated pub-
lic key for the SelfKey attribute. The default value of
AuthorizedServices is an empty list. Finally, we ini-
tialize Keys to contain only S encrypted using the newly
generated public key.

This new profile can now be modified or published to
the authenticated data store as-is.

4.3 Granting and revoking permissions
A user may grant and revoke permission from services to
view his or her profile information.

Suppose you have a profile with the Info field en-
crypted with symmetric key K0. The algorithms by
which to grant and revoke permission to view your pro-
file are enumerated in Figures 2 and 3.

Granting Permission to PKgrant

1. Decrypt Selfkey to obtain Ksel f .

2. Encrypt PKgrant with Ksel f and add the result
to the AuthorizedServices array.

3. Decrypt the first entry in the Keys array with
your private key to obtain K0.

4. Encrypt K0 with PKgrant and add the encrypted
key to your Keys array.

5. Publish the changes to the network.

Figure 2: Algorithm to grant a service permission to view
one’s profile.

Revoking Permission from PKrevoke

1. Decrypt Selfkey to obtain Ksel f .

2. Decrypt, find, and remove PKrevoke from your
AuthorizedServices array.

3. Decrypt the first entry in the Keys array with
your private key to obtain K0.

4. Decrypt the contents of the Info field with K0
to obtain your decrypted information, I.

5. Generate a new symmetric key, K1.

6. Encrypt I with K1 to obtain Ienc and replace the
Info field with Ienc.

7. Encrypt K1 with your own public key
and each of the remaining public keys in
AuthorizedServices and replace the Keys

array with an array of K1 encrypted.

8. Publish changes to the network.

Figure 3: Algorithm to revoke permission to view one’s profile
from a particular service.

3



4.4 Challenge-response

In addition to providing identity, our system also pro-
vides a means of authentication. Using a modified ver-
sion of the Needham-Schroeder PK protocol for identi-
fication [7], two clients may achieve mutual authentica-
tion.

Algorithm. Let A and B be two parties that wish to
mutually authenticate. Let PA and PB denote the public
key encryption with A and B’s public keys, respectively.
A series of messages are sent between the two parties as
shown in Figure 4.

A→ B : h(r1), A, PB(r1,A) (1)
A← B : h(r2), B, PA(r1,r2,B) (2)
A→ B : r2 (3)

Figure 4: Needham-Schroeder PK protocol for identification
modified for mutual authentication.

In the authentication scheme, r1 and r2 are nonces
randomly generated by A and B respectively, and h(r)
is a witness that acts as a zero-knowledge proof of the
sender’s generation of that nonce.

Upon decrypting the challenge message, B will only
continue the protocol iff h(r1) equals the hash of the de-
crypted nonce r1, and the decrypted identifier A equals
the identifier sent in the message. If these conditions
hold, B will send a similar challenge message back, along
with r1 as proof of B’s ownership of its public key. A per-
forms a similar check as well as verifies that r1 is correct,
and returns the decrypted nonce r2 back to B. Successful
completion of this algorithm implies mutual authentica-
tion.

5 Implementation

Our system was implemented in roughly 2000 lines of
Go code. Our system is highly modular in that the client
and server components are agnostic to the implementa-
tion of the other, so long as our protocol is followed.

For the cryptography component of our system, we
used Go’s crypto library. For symmetric encryption,
we used AES-256 in CBC mode, and for asymmetric en-
cryption, we used RSA-OAEP with 2048-bit keys.

We also wrote command line interfaces by which to
generate keys and to perform other client operations,
such as publishing updates and granting permission, as
well as the challenge-response protocol as described in
§ 4.4.

6 Future work

As currently implemented, the system functions as a
proof-of-concept of a trustless decentralized identity sys-
tem. Before such a system could be used in the real
world, there are some changes that would need to be
made.

6.1 Efficient anti-entropy
Currently, when two nodes in the system participate in
anti-entropy, the nodes send their full data structure to
each other. This is sufficient for a proof-of-concept, but
it will not scale to a real-world system. In a real system,
there will be millions or billions of identities, and ex-
changing all that data on every anti-entropy session will
be infeasible.

In real-world use, there may be lots of identities, but
updates for any given profile will not be that frequent,
perhaps on the order of several times a year on average.
A scheme to efficiently perform anti-entropy would need
to efficiently identify small differences in data stored on
nodes. We could do this by storing the data in a Merkle
tree and comparing hashes to efficiently identify differ-
ences in the tree. This is a common technique in anti-
entropy protocols used in eventually-consistent storage
systems [8].

6.2 Space-efficient permissions
Currently, our scheme for storing profile data takes
O(P+S) space per user, where P is the size of the profile
data and S is the number of services the user has autho-
rized. The scheme requires no storage on the services.
Ideally, the identity system would only require the net-
work to store O(P) data per user in the network, and
individual services could store some additional data to
make permissions work properly, and this would result in
a huge reduction in data storage required for the servers
maintaining the identity system. Currently, we do not
know of a way to implement such a system where ser-
vices themselves are not required to operate online.

6.2.1 Fine-grained permissions

In a real-world system, it could be desirable to share cer-
tain parts of profile information with certain services. For
example, a user may want to share their full name with
one service and their phone number with another. This
is not possible in the current implementation of the sys-
tem. This could be achieved by encrypting the profile
data separately for each service, but this would take up
O(P · S) space, which is undesirable. It would be nice
to have a scheme that supports fine-grained permissions
while only using O(P+S) or O(P) space per user.

4



6.3 Sharding
As the system is currently implemented, every node in
the identity system maintains a complete data structure
of all profile data. This makes the safety guarantees
straightforward to achieve at the cost of requiring every
server to store all the data. This works in a proof-of-
concept system, but it would not scale to the real world.
Ideally, data would be sharded and replicated over the
nodes in the system. This could involve switching from
a gossip network to a Distributed Hash Table (DHT) pro-
tocol like Chord [9] or Kademlia [10]. It is more difficult
to achieve our security guarantees when using a DHT
because of the types of attacks that can be performed on
DHT-based systems [11].

6.4 Adoption
For a new identity system to be used in the real world,
users and services would need an easy way to migrate
over.

We can simplify adoption by web services by imple-
menting a proxy service that provides a web API to ac-
cess the network. We note that this service does not have
to be trusted, because data is digitally signed. This bridge
web service could implement the OpenID API for ease of
use.

We can improve the user-friendliness of the identity
scheme with web browser extensions that can store RSA
key pairs and identify with web sites. This browser ex-
tension can be open source, allowing for security valida-
tion, such as verifying that the extension does not leak
keys.

7 Conclusion

Hydra is an open-sourced system that will allow users
to easily utilize a decentralized and secure authentica-
tion system to access services on the Internet. Hydra al-
lows these services to easily authenticate users, and al-
lows anyone to participate in the decentralized storage of
user profile information. Hydra is resilient in the face of
individual node failures, and prevents any party from im-
personating another without possessing that party’s pri-
vate key.

By eliminating several of the problems associated with
current identity providers, Hydra provides a pathway to-
wards an Internet with a trustless, truly decentralized dig-
ital identity system.

References
[1] K. Cameron, “The laws of identity,” tech. rep., Microsoft Cor-

poration, May 2005. https://msdn.microsoft.com/en-us/
library/ms996456.aspx.

[2] D. Recordon and D. Reed, “Openid 2.0: A platform for user-
centric identity management,” in Proceedings of the Second ACM
Workshop on Digital Identity Management, DIM ’06, (New York,
NY, USA), pp. 11–16, ACM, 2006.

[3] S. Shim, G. Bhalla, and V. Pendyala, “Federated identity man-
agement,” Computer, vol. 38, pp. 120–122, Dec. 2005.

[4] D. Obasanjo, “A proposal for social net-
work interoperability via openid.” http://

www.25hoursaday.com/weblog/2007/08/13/

AProposalForSocialNetworkInteroperabilityViaOpenID.

aspx, Aug. 2007.

[5] The OpenID Foundation, “What is openid?.” http://openid.

net/get-an-openid/what-is-openid/.

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtain-
ing digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, pp. 120–126, Feb. 1978.

[7] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook
of Applied Cryptography. Boca Raton, FL, USA: CRC Press,
Inc., 1st ed., 1996.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, “Dynamo: Amazon’s highly available key-value store,”
SIGOPS Oper. Syst. Rev., vol. 41, pp. 205–220, Oct. 2007.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan, “Chord: A scalable peer-to-peer lookup service for inter-
net applications,” in Proceedings of the 2001 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’01, (New York, NY, USA),
pp. 149–160, ACM, 2001.

[10] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Revised Pa-
pers from the First International Workshop on Peer-to-Peer Sys-
tems, IPTPS ’01, (London, UK, UK), pp. 53–65, Springer-Verlag,
2002.

[11] E. Sit and R. Morris, “Security considerations for peer-to-peer
distributed hash tables,” in Revised Papers from the First Interna-
tional Workshop on Peer-to-Peer Systems, IPTPS ’01, (London,
UK, UK), pp. 261–269, Springer-Verlag, 2002.

5

https://msdn.microsoft.com/en-us/library/ms996456.aspx
https://msdn.microsoft.com/en-us/library/ms996456.aspx
http://www.25hoursaday.com/weblog/2007/08/13/AProposalForSocialNetworkInteroperabilityViaOpenID.aspx
http://www.25hoursaday.com/weblog/2007/08/13/AProposalForSocialNetworkInteroperabilityViaOpenID.aspx
http://www.25hoursaday.com/weblog/2007/08/13/AProposalForSocialNetworkInteroperabilityViaOpenID.aspx
http://www.25hoursaday.com/weblog/2007/08/13/AProposalForSocialNetworkInteroperabilityViaOpenID.aspx
http://openid.net/get-an-openid/what-is-openid/
http://openid.net/get-an-openid/what-is-openid/

	Introduction
	Gossip network
	Authenticated data store
	Security guarantees

	Profile service
	Data structure
	Creating identities
	Granting and revoking permissions
	Challenge-response

	Implementation
	Future work
	Efficient anti-entropy
	Space-efficient permissions
	Fine-grained permissions

	Sharding
	Adoption

	Conclusion

